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Abstract. Based on NCP functions, we present a Lagrangian globalization (LG) algorithm
model for solving the nonlinear complementarity problem. In particular, this algorithm model does
not depend on some specific NCP function. Under several theoretical assumptions on NCP
functions we prove that the algorithm model is well-defined and globally convergent. Several NCP
functions applicable to the LG-method are analyzed in details and shown to satisfy these
assumptions. Furthermore, we identify not only the properties of NCP functions which enable
them to be used in the LG method but also their properties which enable the strict complementari-
ty condition to be removed from the convergence conditions of the LG method. Moreover, we
construct a new NCP function which possesses some favourable properties.
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1. Introduction

In this paper we consider the nonlinear complementarity problem (NCP for
nabbreviation): Find a vector x [R satisfying the conditions

Tx > 0 , F(x)> 0 , x F(x)5 0 , (1)

n nwhere F : R →R is assumed to be continuously differentiable.
The NCP has many applications in economics, engineering and various equilib-

rium models [6, 9, 17]. Many numerical methods for solving the NCP have been
developed, e.g., see [2, 5, 8, 10, 14, 23]. Among them, an important class of iterative
methods are based on reformulating the NCP as a system of nonlinear equations.

2By means of a so-called NCP function, i.e., a mapping c : R →R satisfying

c(a, b)5 0 ⇔ a > 0 , b > 0 and ab 5 0 ,

the NCP is reformulated as an equivalent system of nonsmooth equations:

F(x)5 0 , (2)

n nwhere F: R →R is defined by

:F (x) 5c(x , F (x)) , j 5 1, . . . , n .j j j
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In order to globalize such methods, a line search technique is used to achieve a
sufficient decrease of the natural merit function

1 2]C(x)5 iF(x)i , (3)2

which is often, if not always, continuously differentiable.
However, such methods are not always successful in finding a solution of the

NCP. In general, such methods can only find a stationary point of C and typically
require strong assumptions in order to guarantee that every stationary point of C is a

¯solution of the original NCP. Therefore, when one obtains a stationary point x of C,
which is not a solution of the NCP, it is very important and meaningful to have

¯methods to find another point at which the value of C is less than C(x ). In order to
resolve this problem, Chen et al. [3] proposed a Lagrangian globalization (LG)
method for solving the NCP, which can be regarded as a generalization of the LG
method for solving smooth systems [15, 16]. The success of Chen-Qi-Yang method
[3] relies on the use of an NCP function which possesses some favourable
properties.

The NCP function used in [3] is not a unique choice, i.e., there exist many other
NCP functions which may be used to obtain results similar to those in [3]. This
observation motivates us to study further the properties of NCP functions. One
question is: What properties should NCP functions possess to be used in the LG
method? Moreover, the LG method in [3] suffers a drawback in that the strict
complementarity condition is needed for global convergence. Therefore, its applica-
tions are limited. Hence, another question arises: Is it possible to remove the strict
complementarity condition from the LG method? If possible, what properties should
NCP functions have to guarantee to remove the strict complementarity condition in
the LG method?

In this paper we will analyze in details the properties of the following NCP
functions:

f (a, b)5 uf(a, b)u ,1

]]]]]]]]]]]2 2 2
f (a, b)5 h[2f(a, b)] j 1 [(2a) ] 1 [(2b) ] ,2 œ 1 1 1

]]]]]]]2 2
f (a, b)5 [f(a, b)] 1a[(ab) ] , a . 0 ,3 œ 1

]]]]]]]2 4
f (a, b)5 [f(a, b)] 1a[(ab) ] , a . 0 ,4 œ 1

]]]]]]]]2 2
f (a, b)5 [f(a, b)] 1a[(a b ) ] , a . 0 ,5 œ 1 1 1

]]]]]]]]2 2
f (a, b)5 h[f(a, b)] j 1a[(ab) ] , a . 0 ,6 œ 1 1

]]2 2Œ:where f(a, b) 5 a 1 b 2 a 2 b is the Fischer–Burmeister function [7] and for
:any u [R, u 5maxh0, uj. The function f is the absolute value function of f and1 1

has been studied in [3] while the function f was discussed originally in [22] and2
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then in [20]. Other functions f for i 5 3, 4, 5, 6, have been studied in a recentlyi

review on NCP functions [21], also see [1, 11, 12, 24].
As in [3], the aim of the LG method is not to present a new method for solving

ˆ ˆ ¯ ¯the NCP, but to find x such that iF(x )i, iF(x )i when the NCP has a solution and x
is a stationary point of C but not a solution of the NCP. In this paper we first present
an LG-type algorithm model for solving the NCP and make several theoretical
assumptions on NCP functions to ensure global convergence of the algorithm. Then
we analyze in details several NCP functions and answer the two questions presented
above.

The organization of this paper is as follows. In the next section, we will briefly
review several basic concepts and some related properties. In Section 3, based on
NCP functions, we first reformulate the nonlinear complementarity problem as an
unconstrained optimization problem and present some preliminary results. Then we
describe an LG-type algorithm model for solving the NCP. In Section 4, we state
several basic assumptions and prove that under these assumptions, the LG method is
well-defined and globally convergent. In Section 5 we give a detailed analysis of
properties of several NCP functions applicable to the LG method. In Section 6, we
show that NCP functions analyzed in the previous section satisfy those basic
assumptions under mild limitations and answer the two questions proposed above
positively. Some conclusive remarks are given in the last section. Meanwhile, we
construct a new NCP function, which is applicable to the LG method and can
remove the strict complementarity condition from the convergence conditions for
the LG method.

n mNotation: For a given function G: R →R , we denote by G its ith componenti

function. If G is continuously differentiable,=G(x) is the transposed Jacobian of G at
nx [R . If G is directional differentiable, we denote the directional derivative of G at
n nx [R in the direction d [R by G9(x; d). The set of all nonnegative real numbers

is denoted by R . The symbol i?i indicates the Euclidean norm, E indicates the1
n3nn 3 n unit matrix and H indicates the jth column of the matrix H [R .j

2. Preliminaries

In this section we state several basic definitions and summarize some related results.
n mLet Q: R →R be locally Lipschitzian. Then Q is differentiable almost

neverywhere on R . Denote the set of points at which Q is differentiable by D . TheQ

generalized Jacobian of Q at x in the sense of Clarke [4] is defined by

k T
≠Q(x)5 coh lim =Q(x ) j .

kx →x
kx [DQ

n n nLet f : R →R be Lipschitz near a given point x [R and let v be a vector in R .



264 LIQUIN QI AND YU-FEI YANG

The generalized directional derivative of f at x in the direction v, denoted f 8(x; v), is
defined by

f( y 1 tv)2 f( y)
]]]]]f 8(x; v)5lim sup .ty→x

t↓0

The next lemma displays the relationship between generalized gradients and
generalized directional derivatives of f, see Proposition 2.1.2 in [4] for details.

n nLEMMA 2.1. Let f : R →R be Lipschitz near x. Then for any v [R , one has

Tf 8(x; v)5maxhj v u j [ ≠f(x)j .

nWe now introduce the regularity concept. The function f : R →R is said to be
nregular at x [R provided

n(i) for all v [R , the directional derivative f 9(x; v) exists;
n(ii) for all v [R , f 9(x; v)5 f 8(x; v).

The next lemma provides some conditions under which the function f is regular,
see Proposition 2.3.6 in [4].

LEMMA 2.2. Let f be Lipschitz near x.
(i) If f is continuously differentiable at x, then f is regular at x.

(ii) If f is convex, then f is regular at x.

Semismoothness was originally introduced by Mifflin [13] for functionals and
shown to be very important in the global convergence theory of nonsmooth
optimization. Convex functions, smooth functions and piecewise linear functions are
examples of semismooth functions. Qi and Sun [19] extended the definition of
semismooth functions to vector valued functions. It has been proven that

n m n
Q: R →R is semismooth at x [R if and only if all its component function are
and that the composition of (strong) semismooth functions is still a (strong)
semismooth function. The following results can be found in [4, 8, 19]. For more
details about semismooth functions, see Qi and Sun [19].

n nLEMMA 2.3. Let u : R →R be Lipschitzian near x [R . Then
(i) 0[ ≠u(x) if u attains a (local) minimum at x.

k k kˆ(ii) ≠u(?) is upper semicontinuous in the sense that hx → x, y [ ≠u(x ) and
k ˆ ˆ ˆy → y j⇒ hy [ ≠u(x )j.

n n mLEMMA 2.4. Suppose that p: R →R and g: R →R are Lipschitzian near
nx [R and near p(x), respectively. Then the following statements hold.

(i) The composite function q 5 g + p is Lipschitzian near x and

≠q(x)# coh≠g( p(x)) ≠p(x)j .
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In particular, if g is regular at p(x) and p is continuously differentiable at x,
then

T
≠q(x)5≠g( p(x))=p(x) .

(ii) If p and g are semismooth at x and p(x), respectively, then the composite
function q is also semismooth at x and

n
q9(x; d)5 g9( p(x); p9(x; d)) , d [R .

(iii) If p and g are strongly semismooth at x and p(x), respectively, then the
composite function q is also strongly semismooth at x.

3. Algorithm model

In this section we first reformulate the NCP (1) as an unconstrained optimization
problem and deduce some relationships between the two problems. Then we present
an LG-type algorithm model which does not depend on some specific NCP function.

The LG method for solving nonsmooth system (2) is usually used in an
algorithmic framework for solving (2), which is composed of two phases. At the
first phase, a standard algorithm such as the generalized Newton method or one of

¯its variants, is used to solve nonsmooth system (2). If it is stuck at a point, say x,
which is not a solution to (2), then go into the next phase. At the second phase, a

ˆmore expensive algorithm (LG method) is employed to find a new point, say x so
ˆ ¯ ˆthat iF(x )i, iF(x )i. Then the first phase can be reinitiated at x.

In this paper we will focus on the second phase of the above algorithmic
framework, i.e., the LG method for solving (2). As to the whole algorithmic
framework above, see [3] for details. The LG method associates an objective
function f with system (2) to produce an equality constrained optimization problem
of the form:

min f(x) ,
(4)

s.t. F(x)5 0 ,

nwhere f : R →R is specifically chosen and is assumed to be continuously differenti-
Table. For example, f(x)5de x where e is the vector of all ones and d ± 0 is a

constant. See [16] for more details about choices of f.
The Lagrangian function associated with (4) is defined by

T:L(x, l) 5 f(x)1l F(x) (5)

and the associated augmented Lagrangian function is defined by

1 2: : ]P (z) 5P (x, l) 5L(x, l)1 ciF(x)i , (6)c c 2
nwhere l[R is the Lagrange multiply vector, c is a nonnegative real parameter and
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:z 5 (x, l). Therefore, the NCP (1) is reformulated as the following unconstrained
optimization problem:

min P (z) .c
2nz[R

2nA point (x, l)[R is called a critical point of P ifc

≠
]0[ P (x, l) ,c≠x

(7)
≠
]05 P (x, l)5F(x) ,c≠l

where the generalized derivative of P at (x, l) can be written asc

≠ T] P (x, l)5 h=f(x)1Hl1 cHF(x) uH [ ≠F(x) j ,c≠x
(8)

≠
] P (x, l)5F(x) .c≠l

It is easy to deduce the following results, also see [3].

nLEMMA 3.1. (i) If x* is not a solution of the NCP, then for any l[R , (x*, l) is
not a critical point of P .c

(ii) If (x*, l*) is a critical point of P , then x* is a solution of the NCP.c

(iii) If x* is a solution of the NCP and =f(x*) belongs to the range space of an
T nelement H*[ ≠F(x*) . Then there exists a l*[R such that (x*, l*) is a

critical point of P for any c [R .c 1

We now state an LG-type algorithm model for solving the NCP (1) as follows:

ALGORITHM 3.1.
0 0 2n 0¯Step 0. Choose s, b [ (0, 1) and initial vector z 5 (x, l )[R with l < 0. Set

:k 5 0.
k:ˆStep 1. If the termination criterion is satisfied, then let x 5 x , stop.

k k T k k k k k:Step 2. Choose H [ ≠F(x ) . Denote V 5=f(x )1H (l 1 cF(x )) and

k
2Vk :q 5 .kS D

2F(x )

k mkStep 3. Determine t 5b , where m is the smallest nonnegative integer m suchk

that
k m k k m k 2P (z 1b q )2P (z )<2sb iq i . (9)c c

k11 k k k: :Step 4. Set z 5 z 1 t q , k 5 k 1 1. Go to Step 1

The above algorithm is similar to that in [3]. However, the above algorithm model
does not depend on some specific NCP function.
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At Step 1 any reasonable termination criterion can be used. Since the LG method
¯aims at looking for another point at which the value of C is less than C(x ) and we

will prove in Theorem 4.1 that x-part of any accumulation point of the sequence
generated by the above algorithm is a solution of the NCP, in our case we can use

k ¯the termination criterion of the form: iF(x )i<g iF(x )i with some fixed constant
g [ (0, 1). In order to analyze the behaviour of the above algorithm, we assume that

kthe algorithm produces an infinite sequence of points hz j.

4. Basic assumptions and convergence analysis

In this section we first state several basic assumptions. Based on these assumptions,
we analyze the descentness of the generalized gradients of P and show thatc

Algorithm 3.1 is well-defined and globally convergent.
Note that Algorithm 3.1 does not depend on some specific NCP function. In

order to show the well-definedness and global convergence of the algorithm, we
give some assumptions. In the sequel we will prove that under mild limitations, all
NCP functions listed in Section 1 satisfy these assumptions. Denote

¯: :I(x) 5 h j uF (x)5 0j and I(x) 5 h1, . . . , nj\I(x) .j

2ASSUMPTION A1. c(? , ?) is nonnegative, semismooth and regular on R .

k k k k k kASSUMPTION A2. If the sequence h(a , b )j converges and (j ,h )[ ≠c(a , b )
k kfor every k, then the sequence h(j ,h )j is bounded.

2ASSUMPTION A3. For any (a, b)[R , (j,h)[ ≠c(a, b) is always chosen to
satisfy the condition:

5 0 , if c(a, b)± 0 ,2
;v [R , c9((a, b); v)2 (j,h)v (10)H> 0 , if c(a, b)5 0 .

In Assumption A3, we do not assume that any (j,h)[ ≠c(a, b) satisfies the
condition (10). As was done in [3], we have to give mild limitations so as to ensure
the algorithm to choose generalized gradients satisfying (10). In the sequel we will
find that some NCP functions do not require any limitation because any generalized
gradient of these NCP functions satisfies (10). This suggests us to give a stronger
assumption in place of Assumption A3:

2ASSUMPTION A39. For any (a, b)[R and any (j,h)[ ≠c(a, b), the condition
(10) always holds.

From Proposition 2.6.2(e) in [4], we have

T
≠F(x) #F (x)3≠F (x)3? ? ?3≠F (x) .1 2 n
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By Assumption A1, it follows from Lemma 2.4(i) that for any j [ h1, . . . , nj and
n Tany x [R , H [ ≠F (x) can be written as the formj j

H 5m (x)E 1n (x)=F (x) (11)j j j j j

with

(m (x), n (x))[ ≠c(x , F (x)) .j j j j

nFurthermore, it follows from Lemma 2.4(ii) that for any d [R ,

T T9F (x; d)5c9((x , F (x)); (d , =F (x) d) 5c9((x , F (x)); p ) ,j j j j j j j j

T T:where p 5 (d , =F (x) d) . Hence, we getj j j

T9F (x; d)2H d 5c9((x , F (x)); p )2 (m (x), n (x))p , (12)j j j j j j j j

The following result follows immediately from (10) and (12).

TPROPOSITION 4.1. Suppose that H [ ≠F(x) and that for every j [ h1, . . . , nj, the
generalized gradient of c in the computation of H satisfies the condition (10). Thenj

H satisfies

¯5 0 , ; j [ I(x) ,n T9;d [R , F (x; d)2H d (13)Hj j > 0 , ; j [ I(x) .

The next proposition shows that at any noncritical point of P , some negativec

generalized gradient direction of P is its descent direction if suitable conditionsc

hold.

:PROPOSITION 4.2. Suppose that z 5 (x, l) is not a critical point of P and that lc
T T T: :is nonpositive. Let q 5 ((2V ) , (2F(x)) ) with V 5=f(x)1H(l1 cF(x)) and

T 9H [ ≠F(x) . If H satisfies (13), then q is a descent of P at z, i.e., P (z; q), 0.c c

Proof. It is not difficult to deduce
2 T T9P (z; q)52iF(x)i 2=f(x) V 1 (l1 cF(x)) F9(x; 2V )c

2 T 952iF(x)i 2=f(x) V 1 O l F (x; 2V )j j
j[I(x)

91 O (l 1 cF (x))F (x; 2V )j j j
¯j[I(x)

and
2 T T TiV i 5=f(x) V 1 (l1 cF(x)) H V

T T T
5=f(x) V 1 O l H V 1 O (l 1 cF (x))H V ,j j j j j

¯j[I(x) j[I(x)

which together with (13) and l< 0, show
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2 29P (z; q)1 iV i 1 iF(x)ic

T T9 95 O l (F (x; 2V )1H V )1 O (l 1 cF (x))(F (x; 2V )1H V )j j j j j j j
¯j[I(x) j[I(x)

T95 O l (F (x; 2V )1H V )j j j
j[I(x)

<0 .

This implies

2 29P (z; q)<2iV i 2 iF(x)ic

2
52iqi
, 0 . h

By Proposition 4.2 and similar to the proof of Proposition 4.1 in [3], it is easy to
deduce the following result.

PROPOSITION 4.3. Suppose that Assumptions A1 and A3 hold. If Algorithm 3.1
does not stop at Step 1, then the algorithm is well-defined, i.e., there exiss a finite
nonnegative integer m such that (9) holds.

To prove the global convergence of Algorithm 3.1, we need another assumption
which is associated with the NCP (1).

kASSUMPTION A4. Assume that the sequence hx j converges and that for every
k k k k k kj [ h1, . . . , nj, the sequence h(m , n )j with (m , n )[ ≠c(x , F (x )) converges toj j j j j j

k k* *(m , n ). If for every j and any k, (m , n ) satisfies the condition (10), thenj j j j

* *(m , n ) satisfies (10).j j

It is obvious that Assumption A39 implies Assumption A4 and hence Assumption
A39 can replace both Assumtions A3 and A4.

We are now ready to state the global convergence result for Algirithm 3.1 whose
proof is motivated by that of Theorem 4.1 in [3], also see Theorem 2.5 in [18].
However, the convergence result here is based on the above assumptions and does
not exactly depend on the strict complementarity condition.

THEOREM 4.1. Suppose that Assumptions A1 –A4 hold. Then any accumulation
kpoint z*5 (x*, l) of the sequence hz j generated by Algorithm 3.1 is a critical point

of P , i.e., 0[ ≠P (z*). Furthermore, x* is a solution of the NCP (1).c c

k k k TProof. Assume that hz j → z*. Let H [ ≠F (x ) . As (11), we may assume that,k[K j j

for every j [ h1, . . . , nj and any k,

k k k k k k k kH 5m E 1n =F (x ) with (m , n )[ ≠c(x , F (x )) .j j j j j j j j j
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k kIt follows from Assumption A2 that h(m , n )j is bounded. Without loss ofj j k[K
k k * *generality, we assume that h(m , n )j → (m , n ).j j k[K j j

For every j [ h1, . . . , nj, denote

* * *:H 5m E 1n =F (x*) .j j j j j

* * * :By Lemma 2.3(ii), we have that (m , n )[ ≠c(x , F (x*)) and hence H* 5j j j j
T* *(H , . . . , H )[ ≠F(x*) . Proposition 4.1, combined with Assumptions A3 and A4,1 n

shows that H* satisfies (13) at x*. Moreover, from Assumption A1 and the structure
kof Algorithm 3.1, we deduce l < 0 for all k and hence l*< 0.

Let

2V*
q*5S D2F(x*)

5with V* =f(x*)1H*(l*1 cF(x*)). If 0[⁄ ≠P (z*), it follows from Propositionc

4.2 that q* is a descent direction of P at z*. Choose s [ (s, 1). By Proposition 4.3,c 1

there exists some constant t*. 0 such that

2P (z*1 t*q*)2P (z*)<2t*s iq*i .c c 1

k kSince hz j → z*, hq j → q*, P (?) is continuous and s .s, there existsk[K k[K c 1

some positive integer k such that for all k [K and k > k ,0 0

k k k k 2P (z 1 t*q )2P (z )<2t*siq i ,c c

kwhich implies t >bt* for all k [K and k > k . Therefore,0

k11 k k k 2P (z )2P (z )<2t siq ic c

k 2
<2bt*siq i . (14)

kHowever, hP (z )j is monotonicially decreasing and hence it is convergent. Byc
2(14), we get a contradiction: 0<2bt*siq*i , 0. This shows 0[ ≠P (z*). Itc

follows from Lemma 3.1(ii) that x* is a solution of the NCP (1). h

In this theorem, we assume that an accumulation point of the sequence generated
by Algorithm 3.1 exists. The existence of such an accumultion point can be
guaranteed if the level sets of P are bounded.c

The following is a direct corollary of Theorem 4.1, which does not depend on a
particular nonlinear complementarity problem. Hence it implies that under Assump-
tions A1, A2 and A39, the global convergence analysis does not require the strict
complementarity condition.

COROLLARY 4.1. Under Assumptions A1, A2 and A3 9, the statements in Theorem
4.1 hold.
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5. Properties of several NCP functions

In this section we will give the detailed materials about the generalized gradients
and the directional derivatives of function f for every i [ h1, 2, 3, 5, 6j, which arei

very useful in the analysis of the next section. The next lemma shows the
semismoothness of function f for every i [ h1, 2, 3, 4, 5, 6j.i

2LEMMA 5.1. For every i [ h1, 2, 3, 4, 5, 6j, f is strongly semismooth and f isi i

continuously differentiable.

Proof. The results on f and f for i [ h3, 4, 5, 6j have been proved in [3] and [21],1 i]]]2 2respectively. Since f, (?) 1 (?) and (?) are strongly semismooth functions, itœ 1

follows from Lemma 2.4(iii) that f is strongly semismooth. It has been proved in2
2[22] that f is continuously differentiable. h2

We are now ready to deduce the generalized gradients and the directional derivatives
of function f for every i [ h1, 2, 3, 4, 5, 6j. We first rewrite function f for everyi i

i [ h1, 2, 3, 4, 5, 6j as follows:

]]2 2Œa 1 b 2 a 1 b , if a . 0, b . 0 ,
f (a, b)5 ]]1 H 2 2Œa 1 b 2 a 2 b , otherwise ,

]]2 2Œa 1 b 2 a 1 b , if a > 0, b > 0 ,
2b , if a > 0, b , 0 ,

f (a, b)52 2a , if a , 0, b > 0 ,5 ]]2 2Œa 1 b , if a , 0, b , 0 ,

]]]]]]2 2[f(a, b)] 1a[ab] , if ab . 0 ,œf (a, b)5H3
f(a, b) , otherwise ,

]]]]]]2 4[f(a, b)] 1a[ab] , if ab . 0 ,œf (a, b)5H4
f(a, b) , otherwise ,

]]]]]]2 2[f(a, b)] 1a[ab] , if a . 0, b . 0 ,œf (a, b)5H5
f(a, b) , otherwise ,

]Œaab , if a . 0, b . 0 ,
]]]]]]2 2f (a, b)5 [f(a, b)] 1a[ab] , if a , 0, b , 0 ,6 œ5

f(a, b) , otherwise .

The following results on function f are due to Proposition 3.1 in [3].1

PROPOSITION 5.1. (i) If f (a, b)± 0, then f is continuously differeniable at1 1

(a, b) and
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Ta b
]]] ]]]12 , 12 , if a . 0, b . 0 ,]] ]]S D2 2 2 2Œ Œa 1 b a 1 b

=f (a, b)5 (15)1 Ta b5 ]]] ]]]2 1, , if a , 0, b , 0 .]] ]]S D2 2 2 2Œ Œa 1 b a 1 b

If f (a, b)5 0, then the generalized gradient of f at (a, b) is1 1

h(r, 0) u r [ [21, 1]j , if a 5 0, b . 0 ,

h(0, r) u r [ [21, 1]j , if a . 0, b 5 0 ,≠f (a, b)5 (16)1 5
V , if a 5 0, b 5 0 ,1

where V 5 cohV <V j, here1 11 12

2 2
V 5 h(12j, 12h) u j > 0, h> 0, j 1h 5 1j ,11

2 2
V 5 h(j 2 1,h2 1) u j < 0 or h< 0, j 1h 5 1j .12

T(ii) The directional derivative of f at (a, b) in the direction v 5 (v , v ) is1 1 2

≠f ≠f1 1
]] ]]v 1 v , if f (a, b)± 0 ,1 2 1≠a ≠b
uv u , if a 5 0, b . 0 ,9 1f ((a, b); v)5 (17)1

uv u , if a . 0, b 5 0 ,25 6
uf(v , v )u , if a 5 0, b 5 0 .1 2

PROPOSITION 5.2. (i) If d (a, b)± 0, then f is continuously differentiable at2 2

(a, b) and

Ta b
]]] ]]]12 , 12 , if a . 0, b . 0 ,]] ]]S D2 2 2 2Œ Œa 1 b a 1 b

T(0, 21) , if a > 0, b , 0 ,
=f (a, b)5 (18)2 T(21, 0) , if a . 0, b > 0 ,

Ta b
]]] ]]], , if a , 0, b , 0 .]] ]]S D2 2 2 2Œ Œ a 1 b a 1 b

If f (a, b)5 0, then the generalized gradient of f at (a, b) is2 2

h(r, 0) u r [ [21, 1]j , if a 5 0, b . 0 ,

h(0, r) u r [ [21, 1]j , if a . 0, b 5 0 ,≠f (a, b)5 (19)2 5
V , if a 5 0, b 5 0 ,2

where V 5 cohV <V j, here2 21 22

2 2
V 5 h(12j, 12h) u j > 0, h> 0, j 1h 5 1j ,21

2 2
V 5 h(j,h) u j < 0, h< 0, j 1h 5 1j .22

T(ii) The directional derivative of f at (a, b) in the direction v 5 (v , v ) is2 1 2
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≠f ≠f2 2
]] ]]v 1 v , if f (a, b)± 0 ,1 2 2≠a ≠b
uv u , if a 5 0, b . 0 ,9 1f ((a, b); v)5 (20)2

uv u , if a . 0, b 5 0 ,25 6
uf(v , v )u , if a 5 0, b 5 0 .1 2

Proof. (i) (18) is obvious while (19) follows directly from the definition of the
generalized gradient and the expression of f .2

(ii) If f (a, b)± 0, then f is differentiable at (a, b) and hence the assertion2 2

obviously holds.
If a 5 0 and b . 0, then

f (tv , b 1 tv )2f (0, b)2 1 2 29 ]]]]]]]]f ((0, b); v)5lim2 tt↓0

]]]]]2 2tv 1 (b 1 tv )2 (tv ) 2 (b 1 tv )1 2 œ 1 2
]]]]]]]]]]]lim , if v > 0 ,1tt↓05
2tv15 ]]lim , if v , 0 ,1tt↓0

5 uv u .1

If a . 0 and b 5 0, the assertion can be similarly deduced. Moreover, since
f (tv , tv )5 tf (v , v ) for any t . 0, we get2 1 2 2 1 2

f (tv , tv )2 1 29 ]]]]f ((0, 0); v)5lim 5f (v , v ) . h2 2 1 2tt↓0

PROPOSITION 5.3. (i) If f (a, b)± 0, then f is continuously differentiable at3 3

(a, b) and

T1 ≠f 1 ≠f2 2] ] ] ]F G F Gf 1aab , f 1aa b , if ab . 0 ,S Df ≠a f ≠b3 3
T T≠f ≠f a b=f (a, b)53 ] ] ]]] ]]]S D, 5 2 1, 2 1 ,]] ]]S D2 2 2 2≠a ≠b Œ Œ5 6a 1 b a 1 b

if a > 0 and b , 0, or a , 0 and b > 0 .

(21)

If f (a, b)5 0, then the generalized gradient of f at (a, b) is3 3

]]]2Œh(r, 0) u r [ [21, 11ab ]j , if a 5 0, b . 0 ,
]]]2Œ≠f (a, b)5 (22)h(0, r) u r [ [21, 11aa ]j , if a . 0, b 5 0 ,3 5

V , if a 5 0, b 5 0 ,3

where V 5V .3 1
T(ii) The directional derivative of f at (a, b) in the direction v 5 (v , v ) is3 1 2
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≠f ≠f3 3
]] ]]v 1 v , if f (a, b)± 0 ,1 2 3≠a ≠b
]]] 2Œ11ab v , if a 5 0, b . 0 and v . 0 ,1 1

2v , if a 5 0, b . 0 and v < 0 ,9 1 1f ((a, b); v)5 (23)3 ]]]2Œ11aa v , if a . 0, b 5 0 and v . 0 ,2 2

2v , if a . 0, b 5 0 and v < 0 ,2 2uf(v , v )u , if a 5 0, b 5 0 .1 2

Proof. If ab ± 0, the assertions are obvious. For a 5 0 and b , 0, we obtain

f(s, t) 1 1
]]] ]]] ]lim 5 1 and lim 5 ,

2 2 2bs→0 f (s, t) s→0 f (s, t)3 3
t→b t→b

which imply
Tlim =f (s, t)5 (21, 2) 5 lim =f (s, t) .3 32 1s→0 s→0

t→b t→b

So, f is continuously differentiable at (0, b). Similarly, we can deduce that f is3 3

also continuously differentiable at (a, 0) if a , 0.
For a 5 0 and b . 0, it is easy to deduce

f(s, t)s 1
]]] ]]] ]]lim 5 and lim 521 .]]]21 1 sf (s, t) Œs→0 s→03 11ab

t→b t→b

Hence, we get
]]]2 T TŒlim =f (s, t)5 ( 11ab , 0) and lim =f (s, t)5 (21, 0) ,3 321 s→0s→0

t→bt→b

which shows
]]]2Œ≠f (0, b)5 h(r, 0) u r [ [21, 11ab ]j .3

Furthermore, we have

f (tv , b 1 tv )2f (0, b)3 1 2 39 ]]]]]]]]f ((0, b); v)5lim3 tt↓0

]]]]]]]]]]]2 2[f(tv , b 1 tv )] 1a[tv (b 1 tv )]œ 1 2 1 2
]]]]]]]]]]]lim , if v . 0 ,1tt↓05
f(tv , b 1 tv )1 25 ]]]]]lim , if v < 0 ,1tt↓0

]]]2Œ11ab v , if v . 0 ,1 15H
2v , if v < 0 .1 1

If a . 0 and b 5 0, the assertions can be similarly deduced.
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Moreover, we deduce
]]]]]]]]]2 2 2[f(tv , tv )] 1a[(t v v ) ]œ 1 2 1 2 19 ]]]]]]]]]]f (0, 0); v)5lim3 tt↓0

]]]]]]]]]2 4 2[tf(v , v )] 1at [(v v ) ]œ 1 2 1 2 1
]]]]]]]]]5lim tt↓0

5 uf(v , v )u .1 2

By the definition of the generalized gradient and noting that

f(a, b) f(a, b) ab
]]] ]]] ]]]lim 521 , lim 5 1 and lim 5 0 ,

21 f (a, b) a→0 f (a, b) a→0 f (a, b)a→0 3 3 32b→0 b→01b→0

it follows from (21) that V 5 cohV <V <V j, where3 31 32 33

2 2
V 5 h(12j, 12h) u j > 0, h> 0, j 1h 5 1j ,31

2 2
V 5 h(j 2 1,h2 1) u j < 0, h< 0, j 1h 5 1j ,32

2 2
V 5 h(j 2 1,h2 1) u jh< 0, j 1h 5 1j .33

The proof is complete. h

Note that for every i [ h4, 5, 6j, function f is only a variant of f andi 3

f (a, b)5f(a, b) for any i [ h3, 4, 5, 6j if ab < 0; i.e., function f for everyi i

i [ h3, 4, 5, 6j is different only in the first and third quadrant. According to the
previous analysis, it is not difficult to deduce the generalized gradients and the
directional derivatives of function f for every i [ h4, 5, 6j, we omit the process.i

PROPOSITION 5.4. (i) If f (a, b)± 0, then f is continuously differentiable at4 4

(a, b) and

T1 ≠f 1 ≠f3 4 4 3] ] ] ]F G F Gf 1 2aab b , f 1 2aa b ,S Df ≠a f ≠b4 4
if ab . 0 ,

=f (a, b)5 (24)T4 a b ]]] ]]]2 1, 2 1 ,]] ]]S D2 2 2 2Œ Œa 1 b a 1 b if a > 0 and b , 0, or a , 0 and b > 0 .

If f (a, b)5 0, then the generalized gradient of f at (a, b) is4 4

h(r, 0) u r [ [21, 1]j , if a 5 0, b . 0 ,

h(0, r) u r [ [21, 1]j , if a . 0, b 5 0 ,≠f (a, b)5 (25)4 5
V , if a 5 0, b 5 0 ,4

where V 5V .4 1
T(ii) The directional derivative of f at (a, b) in the direction v 5 (v , v ) is4 1 2
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≠f ≠f4 4
]] ]]v 1 v , if f (a, b)± 0 ,1 2 4≠a ≠b
uv u , if a 5 0, b . 0 ,9 1f ((a, b); v)5 (26)4

uv u , if a . 0, b 5 0 ,25 6
uf(v , v )u , if a 5 0, b 5 0 .1 2

PROPOSITION 5.5. (i) If f (a, b)± 0, then f is continuously differentiable at5 5

(a, b) and

T1 ≠f 1 ≠f2 2] ] ] ]F G F Gf 1aab , f 1aa b ,S Df ≠a f ≠b5 5
if a . 0, b . 0 ,

=f (a, b)5 (27)T5 a b ]]] ]]]2 1, 2 1 ,]] ]]S D2 2 2 2Œ Œa 1 b a 1 b if a , 0 or b , 0 .

If f (a, b)5 0, then the generalized gradient of f at (a, b) is5 5

]]]2Œh(r, 0) u r [ [21, 11ab ]j , if a 5 0, b . 0 ,
]]]2Œ≠f (a, b)5 (28)h(0, r) u r [ [21, 11aa ]j , if a . 0, b 5 0 ,5 5

V , if a 5 0, b 5 0 ,5

where V 5V .5 1
T(ii) The directional derivative of f at (a, b) in the direction v 5 (v , v ) is5 1 2

≠f ≠f5 5
]] ]]v 1 v , if f (a, b)± 0 ,1 2 5≠a ≠b
]]] 2Œ11ab v , if a 5 0, b . 0 and v . 0 ,1 1

2v , if a 5 0, b . 0 and v < 0 ,9 1 1f ((a, b); v)5 (29)5 ]]]2Œ11aa v , if a . 0, b 5 0 and v . 0 ,2 2

2v , if a . 0, b 5 0 and v < 0 ,2 2uf(v , v )u , if a 5 0, b 5 0 .1 2

PROPOSITION 5.6. (i) If f (a, b)± 0, then f is continuously differentiable at6 6

(a, b) and

T] ]Œ Œ( ab, aa) , if a . 0, b . 0 ,
T1 ≠f 1 ≠f2 2 2 ] ] ] ]F G F Gf 1aab b , f 1aa b ,S Df ≠a f ≠b6 6

if a , 0, b , 0 ,=f (a, b)5 (30)6
T a b

]]] ]]]2 1, 2 1 ,]] ]]S D2 2 2 2Œ Œa 1 b a 1 b
if a > 0 and b , 0, or a , 0 and b > 0 . 

If f (a, b)5 0, then the generalized gradient of f at (a, b) is6 6
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]Œh(r, 0) u r [ [21, ab]j , if a 5 0, b . 0 ,
]Œh(0, r) u r [ [21, aa]j , if a . 0, b 5 0 ,≠f (a, b)5 (31)6 5

V , if a 5 0, b 5 0 ,6

where V 5 cohh(0, 0)j<V <V j, here6 61 62

2 2
V 5 h(j 2 1,h2 1) u j < 0, h< 0, j 1h 5 1j ,61

2 2
V 5 h(j 2 1,h2 1) u jh< 0, j 1h 5 1j .62

T(ii) The directional derivative of f at (a, b) in the direction v 5 (v , v ) is6 1 2

≠f ≠f6 6
]] ]]v 1 v , if f (a, b)± 0 ,1 2 6≠a ≠b ]Œabv , if a 5 0, b . 0 and v . 0 ,1 1

2v , if a 5 0, b . 0 and v < 0 ,9f ((a, b); v)5 1 1 (32)6 ]Œaav , if a . 0, b 5 0 and v . 0 ,2 2

2v , if a . 0, b 5 0 and v < 0 ,2 2[f(v , v )] , if a 5 0, b 5 0 .1 2 1

6. Verification of assumptions

In Section 4 we have proven that Algorithm 3.1 converges globally if suitable
assumptions hold. In this section we will show that function f for every i [i

h1, . . . , 6j satisfies Assumptions A1 and A2. For every i [ h1, . . . , 5j, function fi

satisfies Assumptions A3 and A4 if restricting the choice of the generalized
gradients of f at the origin and assuming that the strict complementarity conditioni

holds at the limit point, while function f satisfies Assumption A39 without any6

condition.
The next theorem follows immediately from Lemma 5.1 and Propositions

5.1–5.6.

THEOREM 6.1. For every i [ h1, . . . , 6j, c 5f satisfies Assumptions A1 and A2.i

Now we turn to deduce the conditions under which Assumption A3 holds. To this
end, we first show the next proposition.

2PROPOSITION 6.1. For every i [ h1, . . . , 6j, ;(a, b)[R and ;(j,h)[ ≠f (a, b),i

one has

5 0 , if f (a, b)± 0 ,i9f ((a, b); v)2 (j,h)vHi > 0 , if f (a, b)5 0 but (a, b)± (0, 0) .i

Proof. The proof is based on Propositions 5.1–5.6.
If f (a, b)± 0. Then f is continuously differentiable at (a, b) andi i
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≠f ≠f ≠f ≠fi i i i9 ] ] HS] ]DJf ((a, b); v)5 v 1 v and ≠f (a, b)5 , ,i 1 2 i≠a ≠b ≠a ≠b

9which imply f ((a, b); v)2 (j,h)v 5 0.i

If a 5 0 and b . 0. For i 5 1, 2, 4, we have

9f ((a, b); v)2 (j,h)v 5 uv u2jv > 0 , ;j [ [21, 1] .i 1 1

For i 5 3, 5, we have
]]]2Œ11ab v 2jv , if v . 0 ,1 1 19f ((a, b); v)2 (j,h)v 5Hi

2v 2jv , if v < 0 ,1 1 1

]]]2Œ> 0 , ;j [ [21, 11ab ] .

For i 5 6, we have
]Œabv 2jv , if v . 0 ,1 1 19f ((a, b); v)2 (j,h)v 5Hi 2v 2jv , if v < 0 ,1 1 1

]Œ> 0 , ;j [ [21, ab] .

If a . 0 and b 5 0. In this case, the proof is similar to that of the previous case.
The assertion is proved. h

From the above proposition, in order to verify Assumption A3, we only need to
consider the case: (a, b)5 (0, 0). The following basic lemma is due to Proposition
3.5 in [3] and will play a very important role in the analysis of this section.

LEMMA 6.1. For any (s, t)[V , we have0

uf(a, b)u2 as 2 bt > 0 , (33)

where

2 2:V 5 h(j,h) u (j 1 1) 1 (h1 1) < 1j< h(j,h) u21<j < 0, 21<h< 0j .0

Denote

˜ ˜: :V 5V > h(j,h) u j < 0, h< 0j and V 5V for i 5 1, 3, 4, 5, 6 .2 2 i 0

˜ ˜It is obvious that V #V for every i [ h1, . . . , 5j and V 5V . From the abovei i 6 6

basic lemma and Propositions 5.1–5.6, we deduce the next proposition.

2PROPOSITION 6.2. For every i [ h1, . . . , 6j and ;v [R , one has

9f ((0, 0); v)2 (j,h)v > 0 , (34)i

˜whenever (j,h)[V .i
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˜ 9Proof. For every i [ h1, 3, 4, 5j, since V 5V and f ((0, 0); v)5 uf(v , v )u, iti 0 i 1 2

follows directly from Lemma 6.1 that

˜9f ((0, 0); v)2 (j,h)v 5 uf(v , v )u2jv 2hv > 0 , ;(j,h)[V .i 1 2 1 2 i

Moreover, it is not difficult to deduce

2jv 2hv , if v > 0, v > 0 ,1 2 1 2
9f ((0, 0); v)2 (j,h)v 5H6 uf(v , v )u2jv 2hv , otherwise ,1 2 1 2

˜> 0 , ;(j,h)[V ;6

and

uf(v , v )u2jv 2hv , if v > 0, v > 0 ,1 2 1 2 1 2

2jv 2 (11h)v , if v > 0, v , 0 ,1 2 1 2
9f ((0, 0); v)2 (j,h)v 52 2(11j )v 2hv , if v , 0, v > 0 ,1 2 1 25 ]]2 2v 1 v 2jv 2hv , if v , 0, v , 0 ,œ 1 2 1 2 1 2

˜> 0 , ;(j,h)[V ,2

where the last item above is due to
2 2 2 2 2 2 2v 1 v 2 (jv 1hv ) 5 (12j )v 1 (12h )v 2 2jhv v1 2 1 2 1 2 1 2

2 2 2 2
>h v 1j v 2 2jhv v1 2 1 2

˜> 0 , [ (j,h)[V .2

The proof is complete. h

The next theorem is a direct consequence of Propositions 6.1 and 6.2.

THEOREM 6.2. For every i [ h1, . . . , 5j, function c 5f satisfies Assumption A3i
˜whenever the generalized gradients of f at the origin are chosen within V .i i

k k kAssume that hx j→ x*. If for some j [ h1, . . . , nj, the sequence h(m , n )j withj j
k k k k k k* *(m , n )[ ≠c(x , F (x )) converges to (m , n ) and for any k, (m , n ) satisfiesj j j j j j j j

* * *(10). It follows from Lemma 2.3(ii) that (m , n )[ ≠c(x , F (x*)). However,j j j j

* *Proposition 6.2 implies that (m , n ) does not necessarily satisfy (10). If wej j

suppose that the strict complementarity condition holds at x*, i.e.,

I (x*)5 5 ,0

* *:where I (x) 5 h j u x 5 0, F (x)5 0j, then (m , n ) satisfies (10). Hence, we deduce0 j j j j

the next theorem.

THEOREM 6.3. For every i [ h1, 5j, function c 5f satisfies Assumption A4i
˜whenever the generalized gradients of f at the origin are chosen within V and thei i

kstrict complementarity condition holds at the limit point of hx j.
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˜Since V 5V , in the proof of Proposition 6.2, we have actually proved that (34)6 6

holds for any (j,h)[V . This means that we have deduced the next theorem.6

THEOREM 6.4. Function c 5f satisfies Assumption A3 9.6

From the analysis above, all NCP functions listed in Section 1 satisfy the needed
assumptions so as to ensure the global convergence of the LG method whenever the

˜generalized gradients of the corresponding f at the origin are chosen within V andi i
kthe strict complementarity condition holds at the limit point of hx j. However, due to

Ṽ 5V , Theorem 6.4 shows that if c 5f is used in the LG method, then the6 6 6

strict complementarity condition and the limitation in the choice of the generalized
Jacobians of f are unnecessary.6

On the other hand, the above analysis also answers positively the two questions
presented in the introduction. If some NCP function satisfies Assumptions A1–A4,
then it can be used in the LG method. Moreover, if it satisfies Assumption A39
instead of Assumptions A3 and A4, then the strict complementarity condition can be
removed from the LG method.

7. Final remarks

In this paper we proposed an LG-type algorithm model for solving the nonlinear
complementarity problem. In particular our algorithm model does not depend on
some specific NCP function. We find that under our algorithm model, in order to
guarantee the global convergence of the algorithm, some NCP functions require
mild limitations while other NCP functions do not require any limitation. For
example, if we use function f in our algorithm model, then the global convergence6

of the algorithm does not need the strict complementarity condition whereas if we
use other functions., even its variant f for i 5 3, 4, 5, we cannot remove thisi

condition. Actually, we have deduced the assertions:

• NCP functions satisfying Assumptions A1–A4 are applicable to the LG method.
• NCP functions satisfying Assumptions A1, A2 and A39 are applicable to the LG

method without requiring the strict complementarity condition at the solution.

Meanwhile, we studied in details six NCP functions applicable to the LG method.
Based on the observation to these NCP functions, we can construct a new NCP
function possibly with the same properties as f . Set6

]]]]]]]]]]2 2 2:f (a, b) 5 [(2a) ] 1 [(2b) ] 1a[(ab) ] , a . 0 ,7 œ 1 1 1

]Œaab , if a > 0, b > 0 ,
2b, if a > 0, b , 0 ,

5 2a , if a , 0, b > 0 ,5 ]]]]]2 2 2a 1 b 1a(ab) , if a , 0, b , 0 .œ
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We observe that the function f with a 5 1 can also be reformulated from a merit7

function studied in [11]. It is not difficult to deduce the following results:
2• f is strongly semismooth and f is continuously differentiable.7 7

• If f (a, b)± 0, then f is continuously differentiable at (a, b).7 7

• If f (a, b)5 0, then the generalized gradient of f at (a, b) is7 7

]Œh(r, 0) u r [ [21, ab]j , if a 5 0, b . 0 ,
]Œh(0, r) u r [ [21, aa]j , if a . 0, b 5 0 ,≠f (a, b)57 5

V , if a 5 0, b 5 0 ,7

2 2:where V 5 h(j,h) u j < 0, h< 0, j 1h < 1j.7
T• The directional derivative of f at (a, b) in the direction v 5 (v , v ) is7 1 2

≠f ≠f7 7
]] ]]v 1 v , if f (a, b)± 0 ,1 2 7≠a ≠b
]Œabv , if a 5 0, b . 0 and v . 0 ,1 1

2v , if a 5 0, b . 0 and v < 0 ,1 19f ((a, b); v)57 ]Œaav , if a . 0, b 5 0 and v . 0 , 2 2

2v , if a . 0, b 5 0 and v < 0 ,2 2
]]]]]]]2 2[(2v ) ] 1 [(2v ) ] , if a 5 0, b 5 0 .œ 1 1 2 1

• Function c 5f satisfies Assumptions A1, A2 and A39.7

The last item above shows that: if we use c 5f in our algorithm model, then the7

global convergence of the algorithm does not require the strict complementarity
condition.

An interesting question is whether the LG-type algorithm model presented in this
paper can be generalized to the mixed complementarity problem, the box con-
strained variational inequality problem even the general variational inequality
problem, or whether it is possible to avoid the unboundedness of the multiplier
sequence in the implementation of the algorithm.

Moreover, in this paper we do not discuss the conditions under which the iterates
generated by the LG method are bounded. This is also a very important and
interesting question. We will leave these questions as further research topics.
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